PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  splitelof-P6-L1

Theorem splitelof-P6-L1 777
Description: Lemma for splitelof-P6 778.
Assertion
Ref Expression
splitelof-P6-L1 ((𝑎 = 𝑡𝑏 = 𝑢) → (𝑡𝑢 ↔ ∃𝑎𝑏((𝑎 = 𝑡𝑏 = 𝑢) ∧ 𝑎𝑏)))
Distinct variable groups:   𝑡,𝑎   𝑢,𝑎   𝑡,𝑏   𝑢,𝑏,𝑎

Proof of Theorem splitelof-P6-L1
StepHypRef Expression
1 rcp-NDASM1of2 193 . . . . 5 (((𝑎 = 𝑡𝑏 = 𝑢) ∧ 𝑡𝑢) → (𝑎 = 𝑡𝑏 = 𝑢))
2 subelofd-P5.CL 643 . . . . . . 7 ((𝑎 = 𝑡𝑏 = 𝑢) → (𝑎𝑏𝑡𝑢))
32ndbier-P3.15 180 . . . . . 6 ((𝑎 = 𝑡𝑏 = 𝑢) → (𝑡𝑢𝑎𝑏))
43import-P3.34a.RC 306 . . . . 5 (((𝑎 = 𝑡𝑏 = 𝑢) ∧ 𝑡𝑢) → 𝑎𝑏)
51, 4ndandi-P3.7 172 . . . 4 (((𝑎 = 𝑡𝑏 = 𝑢) ∧ 𝑡𝑢) → ((𝑎 = 𝑡𝑏 = 𝑢) ∧ 𝑎𝑏))
6 exi-P6 718 . . . 4 (((𝑎 = 𝑡𝑏 = 𝑢) ∧ 𝑎𝑏) → ∃𝑏((𝑎 = 𝑡𝑏 = 𝑢) ∧ 𝑎𝑏))
7 exi-P6 718 . . . 4 (∃𝑏((𝑎 = 𝑡𝑏 = 𝑢) ∧ 𝑎𝑏) → ∃𝑎𝑏((𝑎 = 𝑡𝑏 = 𝑢) ∧ 𝑎𝑏))
85, 6, 7dsyl-P3.25.RC 262 . . 3 (((𝑎 = 𝑡𝑏 = 𝑢) ∧ 𝑡𝑢) → ∃𝑎𝑏((𝑎 = 𝑡𝑏 = 𝑢) ∧ 𝑎𝑏))
98rcp-NDIMI2 224 . 2 ((𝑎 = 𝑡𝑏 = 𝑢) → (𝑡𝑢 → ∃𝑎𝑏((𝑎 = 𝑡𝑏 = 𝑢) ∧ 𝑎𝑏)))
102ndbief-P3.14 179 . . . . . 6 ((𝑎 = 𝑡𝑏 = 𝑢) → (𝑎𝑏𝑡𝑢))
1110import-P3.34a.RC 306 . . . . 5 (((𝑎 = 𝑡𝑏 = 𝑢) ∧ 𝑎𝑏) → 𝑡𝑢)
1211exiav-P5 615 . . . 4 (∃𝑏((𝑎 = 𝑡𝑏 = 𝑢) ∧ 𝑎𝑏) → 𝑡𝑢)
1312exiav-P5 615 . . 3 (∃𝑎𝑏((𝑎 = 𝑡𝑏 = 𝑢) ∧ 𝑎𝑏) → 𝑡𝑢)
1413rcp-NDIMP0addall 207 . 2 ((𝑎 = 𝑡𝑏 = 𝑢) → (∃𝑎𝑏((𝑎 = 𝑡𝑏 = 𝑢) ∧ 𝑎𝑏) → 𝑡𝑢))
159, 14ndbii-P3.13 178 1 ((𝑎 = 𝑡𝑏 = 𝑢) → (𝑡𝑢 ↔ ∃𝑎𝑏((𝑎 = 𝑡𝑏 = 𝑢) ∧ 𝑎𝑏)))
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-elemof 7  wff-imp 10  wff-bi 104  wff-and 132  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L8-inl 20  ax-L8-inr 21  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  splitelof-P6  778
  Copyright terms: Public domain W3C validator