Proof of Theorem splitelof-P6-L1
| Step | Hyp | Ref
| Expression |
| 1 | | rcp-NDASM1of2 193 |
. . . . 5
⊢ (((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ∧
𝑡 ∈ 𝑢)
→ (𝑎 = 𝑡
∧ 𝑏 = 𝑢)) |
| 2 | | subelofd-P5.CL 643 |
. . . . . . 7
⊢ ((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) →
(𝑎 ∈ 𝑏
↔ 𝑡 ∈ 𝑢)) |
| 3 | 2 | ndbier-P3.15 180 |
. . . . . 6
⊢ ((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) →
(𝑡 ∈ 𝑢
→ 𝑎 ∈ 𝑏)) |
| 4 | 3 | import-P3.34a.RC 306 |
. . . . 5
⊢ (((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ∧
𝑡 ∈ 𝑢)
→ 𝑎 ∈ 𝑏) |
| 5 | 1, 4 | ndandi-P3.7 172 |
. . . 4
⊢ (((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ∧
𝑡 ∈ 𝑢)
→ ((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ∧ 𝑎 ∈
𝑏)) |
| 6 | | exi-P6 718 |
. . . 4
⊢ (((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ∧
𝑎 ∈ 𝑏)
→ ∃𝑏((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ∧
𝑎 ∈ 𝑏)) |
| 7 | | exi-P6 718 |
. . . 4
⊢ (∃𝑏((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ∧ 𝑎 ∈
𝑏) → ∃𝑎∃𝑏((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ∧
𝑎 ∈ 𝑏)) |
| 8 | 5, 6, 7 | dsyl-P3.25.RC 262 |
. . 3
⊢ (((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ∧
𝑡 ∈ 𝑢)
→ ∃𝑎∃𝑏((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ∧ 𝑎 ∈
𝑏)) |
| 9 | 8 | rcp-NDIMI2 224 |
. 2
⊢ ((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) →
(𝑡 ∈ 𝑢
→ ∃𝑎∃𝑏((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ∧ 𝑎 ∈
𝑏))) |
| 10 | 2 | ndbief-P3.14 179 |
. . . . . 6
⊢ ((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) →
(𝑎 ∈ 𝑏
→ 𝑡 ∈ 𝑢)) |
| 11 | 10 | import-P3.34a.RC 306 |
. . . . 5
⊢ (((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ∧
𝑎 ∈ 𝑏)
→ 𝑡 ∈ 𝑢) |
| 12 | 11 | exiav-P5 615 |
. . . 4
⊢ (∃𝑏((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ∧ 𝑎 ∈
𝑏) → 𝑡
∈ 𝑢) |
| 13 | 12 | exiav-P5 615 |
. . 3
⊢ (∃𝑎∃𝑏((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ∧
𝑎 ∈ 𝑏)
→ 𝑡 ∈ 𝑢) |
| 14 | 13 | rcp-NDIMP0addall 207 |
. 2
⊢ ((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) →
(∃𝑎∃𝑏((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ∧ 𝑎 ∈
𝑏) → 𝑡
∈ 𝑢)) |
| 15 | 9, 14 | ndbii-P3.13 178 |
1
⊢ ((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) →
(𝑡 ∈ 𝑢
↔ ∃𝑎∃𝑏((𝑎 = 𝑡 ∧ 𝑏 = 𝑢) ∧ 𝑎 ∈
𝑏))) |