| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > ndbief-P3.14 | |||
| Description: Natural Deduction: '↔' Elimination Rule - Forward Implication.
After deducing a biconditional statement, we can deduce the assocated forward implication. |
| Ref | Expression |
|---|---|
| ndbief-P3.14.1 | ⊢ (𝛾 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ndbief-P3.14 | ⊢ (𝛾 → (𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndbief-P3.14.1 | . 2 ⊢ (𝛾 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | bifwd-P2.5a.AC.SH 113 | 1 ⊢ (𝛾 → (𝜑 → 𝜓)) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ↔ wff-bi 104 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 |
| This theorem is referenced by: rcp-NDBIEF0 240 ndbief-P3.14.CL 249 bisym-P3.33b 298 bitrns-P3.33c 302 subneg-P3.39 323 subiml-P3.40a 325 subimr-P3.40b 327 subimd-P3.40c 329 subandl-P3.42a-L1 338 suborl-P3.43a-L1 345 negbicancel-P4.11 419 negbicancelint-P4.14 424 bimpf-P4 531 subneg2-P4 538 subiml2-P4 540 subimr2-P4 542 subimd2-P4 544 subbil2-P4 546 subbir2-P4 548 subbid2-P4 550 subandl2-P4 552 subandr2-P4 554 subandd2-P4 556 suborl2-P4 558 suborr2-P4 560 subord2-P4 562 suballv-P5 623 subexv-P5 624 specisub-P5 654 cbvallv-P5 659 cbvall-P6 751 suball-P6 753 subex-P6 754 lemma-L6.07a-L1 770 splitelof-P6-L1 777 exiad-P6 824 lemma-L7.02a-L1 943 suball-P7 973 dfpsubv-P7 977 axL12-P7 982 subex-P7 1042 |
| Copyright terms: Public domain | W3C validator |