PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndbief-P3.14

Theorem ndbief-P3.14 179
Description: Natural Deduction: '' Elimination Rule - Forward Implication.

After deducing a biconditional statement, we can deduce the assocated forward implication.

Hypothesis
Ref Expression
ndbief-P3.14.1 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
ndbief-P3.14 (𝛾 → (𝜑𝜓))

Proof of Theorem ndbief-P3.14
StepHypRef Expression
1 ndbief-P3.14.1 . 2 (𝛾 → (𝜑𝜓))
21bifwd-P2.5a.AC.SH 113 1 (𝛾 → (𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107
This theorem is referenced by:  rcp-NDBIEF0  240  ndbief-P3.14.CL  249  bisym-P3.33b  298  bitrns-P3.33c  302  subneg-P3.39  323  subiml-P3.40a  325  subimr-P3.40b  327  subimd-P3.40c  329  subandl-P3.42a-L1  338  suborl-P3.43a-L1  345  negbicancel-P4.11  419  negbicancelint-P4.14  424  bimpf-P4  531  subneg2-P4  538  subiml2-P4  540  subimr2-P4  542  subimd2-P4  544  subbil2-P4  546  subbir2-P4  548  subbid2-P4  550  subandl2-P4  552  subandr2-P4  554  subandd2-P4  556  suborl2-P4  558  suborr2-P4  560  subord2-P4  562  suballv-P5  623  subexv-P5  624  specisub-P5  654  cbvallv-P5  659  cbvall-P6  751  suball-P6  753  subex-P6  754  lemma-L6.07a-L1  770  splitelof-P6-L1  777  exiad-P6  824  lemma-L7.02a-L1  943  suball-P7  973  dfpsubv-P7  977  axL12-P7  982  subex-P7  1042
  Copyright terms: Public domain W3C validator