Proof of Theorem subandl-P3.42a-L1
| Step | Hyp | Ref
| Expression |
| 1 | | rcp-NDASM2of2 194 |
. . . . 5
⊢ ((𝛾 ∧ (𝜑 ∧
𝜒)) → (𝜑
∧ 𝜒)) |
| 2 | 1 | ndander-P3.9 174 |
. . . 4
⊢ ((𝛾 ∧ (𝜑 ∧
𝜒)) → 𝜑) |
| 3 | | subandl-P3.42a-L1.1 |
. . . . . 6
⊢ (𝛾 → (𝜑 ↔
𝜓)) |
| 4 | 3 | rcp-NDIMP1add1 208 |
. . . . 5
⊢ ((𝛾 ∧ (𝜑 ∧
𝜒)) → (𝜑
↔ 𝜓)) |
| 5 | 4 | ndbief-P3.14 179 |
. . . 4
⊢ ((𝛾 ∧ (𝜑 ∧
𝜒)) → (𝜑
→ 𝜓)) |
| 6 | 2, 5 | ndime-P3.6 171 |
. . 3
⊢ ((𝛾 ∧ (𝜑 ∧
𝜒)) → 𝜓) |
| 7 | 1 | ndandel-P3.8 173 |
. . 3
⊢ ((𝛾 ∧ (𝜑 ∧
𝜒)) → 𝜒) |
| 8 | 6, 7 | ndandi-P3.7 172 |
. 2
⊢ ((𝛾 ∧ (𝜑 ∧
𝜒)) → (𝜓
∧ 𝜒)) |
| 9 | 8 | rcp-NDIMI2 224 |
1
⊢ (𝛾 → ((𝜑 ∧
𝜒) → (𝜓
∧ 𝜒))) |