PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subandl-P3.42a-L1

Theorem subandl-P3.42a-L1 338
Description: Lemma for subandl-P3.42a 339.
Hypothesis
Ref Expression
subandl-P3.42a-L1.1 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
subandl-P3.42a-L1 (𝛾 → ((𝜑𝜒) → (𝜓𝜒)))

Proof of Theorem subandl-P3.42a-L1
StepHypRef Expression
1 rcp-NDASM2of2 194 . . . . 5 ((𝛾 ∧ (𝜑𝜒)) → (𝜑𝜒))
21ndander-P3.9 174 . . . 4 ((𝛾 ∧ (𝜑𝜒)) → 𝜑)
3 subandl-P3.42a-L1.1 . . . . . 6 (𝛾 → (𝜑𝜓))
43rcp-NDIMP1add1 208 . . . . 5 ((𝛾 ∧ (𝜑𝜒)) → (𝜑𝜓))
54ndbief-P3.14 179 . . . 4 ((𝛾 ∧ (𝜑𝜒)) → (𝜑𝜓))
62, 5ndime-P3.6 171 . . 3 ((𝛾 ∧ (𝜑𝜒)) → 𝜓)
71ndandel-P3.8 173 . . 3 ((𝛾 ∧ (𝜑𝜒)) → 𝜒)
86, 7ndandi-P3.7 172 . 2 ((𝛾 ∧ (𝜑𝜒)) → (𝜓𝜒))
98rcp-NDIMI2 224 1 (𝛾 → ((𝜑𝜒) → (𝜓𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  subandl-P3.42a  339
  Copyright terms: Public domain W3C validator