PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subandl-P3.42a

Theorem subandl-P3.42a 339
Description: Left Substitution Law for ''.
Hypothesis
Ref Expression
subandl-P3.42a.1 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
subandl-P3.42a (𝛾 → ((𝜑𝜒) ↔ (𝜓𝜒)))

Proof of Theorem subandl-P3.42a
StepHypRef Expression
1 subandl-P3.42a.1 . . 3 (𝛾 → (𝜑𝜓))
21subandl-P3.42a-L1 338 . 2 (𝛾 → ((𝜑𝜒) → (𝜓𝜒)))
31bisym-P3.33b 298 . . 3 (𝛾 → (𝜓𝜑))
43subandl-P3.42a-L1 338 . 2 (𝛾 → ((𝜓𝜒) → (𝜑𝜒)))
52, 4ndbii-P3.13 178 1 (𝛾 → ((𝜑𝜒) ↔ (𝜓𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  subandl-P3.42a.RC  340  subandr-P3.42b  341  subandd-P3.42c  343  subandl2-P4  552
  Copyright terms: Public domain W3C validator