PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subneg2-P4

Theorem subneg2-P4 538
Description: Alternate Form of subneg-P3.39 323.
Hypotheses
Ref Expression
subneg2-P4.1 (𝛾 → ¬ 𝜑)
subneg2-P4.2 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
subneg2-P4 (𝛾 → ¬ 𝜓)

Proof of Theorem subneg2-P4
StepHypRef Expression
1 subneg2-P4.1 . 2 (𝛾 → ¬ 𝜑)
2 subneg2-P4.2 . . . 4 (𝛾 → (𝜑𝜓))
32subneg-P3.39 323 . . 3 (𝛾 → (¬ 𝜑 ↔ ¬ 𝜓))
43ndbief-P3.14 179 . 2 (𝛾 → (¬ 𝜑 → ¬ 𝜓))
51, 4ndime-P3.6 171 1 (𝛾 → ¬ 𝜓)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-rcp-AND3 161
This theorem is referenced by:  subneg2-P4.RC  539
  Copyright terms: Public domain W3C validator