PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  trnspeq-P4c

Theorem trnspeq-P4c 537
Description: Transposition Equivalence Law (trnsp-P3.31c 285 and trnsp-P3.31d 288).
Assertion
Ref Expression
trnspeq-P4c ((𝜑𝜓) ↔ (¬ 𝜓 → ¬ 𝜑))

Proof of Theorem trnspeq-P4c
StepHypRef Expression
1 trnsp-P3.31c.CL 287 . 2 ((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))
2 trnsp-P3.31d.CL 290 . 2 ((¬ 𝜓 → ¬ 𝜑) → (𝜑𝜓))
31, 2rcp-NDBII0 239 1 ((𝜑𝜓) ↔ (¬ 𝜓 → ¬ 𝜑))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by:  alloverimex-P5  601
  Copyright terms: Public domain W3C validator