| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > trnspeq-P4c | |||
| Description: Transposition Equivalence Law (trnsp-P3.31c 285 and trnsp-P3.31d 288). |
| Ref | Expression |
|---|---|
| trnspeq-P4c | ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trnsp-P3.31c.CL 287 | . 2 ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) | |
| 2 | trnsp-P3.31d.CL 290 | . 2 ⊢ ((¬ 𝜓 → ¬ 𝜑) → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | rcp-NDBII0 239 | 1 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝜑)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 → wff-imp 10 ↔ wff-bi 104 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 |
| This theorem is referenced by: alloverimex-P5 601 |
| Copyright terms: Public domain | W3C validator |