PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  trnsp-P3.31d.CL

Theorem trnsp-P3.31d.CL 290
Description: Closed Form of trnsp-P3.31d 288 (Axiom L3).

This is a restatement of Axiom L3, deduced via natural deduction.

Assertion
Ref Expression
trnsp-P3.31d.CL ((¬ 𝜑 → ¬ 𝜓) → (𝜓𝜑))

Proof of Theorem trnsp-P3.31d.CL
StepHypRef Expression
1 rcp-NDASM1of1 192 . 2 ((¬ 𝜑 → ¬ 𝜓) → (¬ 𝜑 → ¬ 𝜓))
21trnsp-P3.31d 288 1 ((¬ 𝜑 → ¬ 𝜓) → (𝜓𝜑))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by:  trnspeq-P4c  537
  Copyright terms: Public domain W3C validator