PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  mt-P3.32a

Theorem mt-P3.32a 291
Description: Modus Tollens.

This statement is the deductive form of nclav-P1.14 73. It does not rely on the Law of Excluded Middle, and is thus deducible with intuitionist logic.

Hypothesis
Ref Expression
mt-P3.32a.1 (𝛾 → (𝜑 → ¬ 𝜑))
Assertion
Ref Expression
mt-P3.32a (𝛾 → ¬ 𝜑)

Proof of Theorem mt-P3.32a
StepHypRef Expression
1 rcp-NDASM2of2 194 . 2 ((𝛾𝜑) → 𝜑)
2 mt-P3.32a.1 . . . 4 (𝛾 → (𝜑 → ¬ 𝜑))
32rcp-NDIMP1add1 208 . . 3 ((𝛾𝜑) → (𝜑 → ¬ 𝜑))
41, 3ndime-P3.6 171 . 2 ((𝛾𝜑) → ¬ 𝜑)
51, 4rcp-NDNEGI2 219 1 (𝛾 → ¬ 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  mt-P3.32a.RC  292  mt-3.32a.CL  293
  Copyright terms: Public domain W3C validator