PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nclav-P1.14

Theorem nclav-P1.14 73
Description: Negated Clavius's Law.

This is the negated form of clav-P1.12 68.

Assertion
Ref Expression
nclav-P1.14 ((𝜑 → ¬ 𝜑) → ¬ 𝜑)

Proof of Theorem nclav-P1.14
StepHypRef Expression
1 dneg-P1.13a 71 . . 3 (¬ ¬ 𝜑𝜑)
21imsubl-P1.7b.SH 55 . 2 ((𝜑 → ¬ 𝜑) → (¬ ¬ 𝜑 → ¬ 𝜑))
3 clav-P1.12 68 . 2 ((¬ ¬ 𝜑 → ¬ 𝜑) → ¬ 𝜑)
42, 3syl-P1.2 34 1 ((𝜑 → ¬ 𝜑) → ¬ 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem is referenced by:  clav-P1.14.AC.SH  74  nclav-P1.14.2AC.SH  75
  Copyright terms: Public domain W3C validator