PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  syl-P1.2

Theorem syl-P1.2 34
Description: Syllogism Inference.
Hypotheses
Ref Expression
syl-P1.2.1 (𝜑𝜓)
syl-P1.2.2 (𝜓𝜒)
Assertion
Ref Expression
syl-P1.2 (𝜑𝜒)

Proof of Theorem syl-P1.2
StepHypRef Expression
1 syl-P1.2.1 . 2 (𝜑𝜓)
2 syl-P1.2.2 . . . 4 (𝜓𝜒)
32axL1.SH 30 . . 3 (𝜑 → (𝜓𝜒))
43axL2.SH 31 . 2 ((𝜑𝜓) → (𝜑𝜒))
51, 4ax-MP 14 1 (𝜑𝜒)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-MP 14
This theorem is referenced by:  dsyl-P1.3  35  rcp-FR2  41  rcp-FR3  43  poe-P1.11a  65  dneg-P1.13a  71  nclav-P1.14  73  trnsp-P1.15a  76  trnsp-P1.15b  78  trnsp-P1.15c  80  bifwd-P2.5a  111  birev-P2.5b  115  simpl-P2.9a  134  simpr-P2.9b  136  orintr-P2.11b  148  orelim-P2.11c  150
  Copyright terms: Public domain W3C validator