PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  poe-P1.11a

Theorem poe-P1.11a 65
Description: Principle of Explosion A.

A contradiction implies anything. The other form is poe-P1.11b 66.

Assertion
Ref Expression
poe-P1.11a 𝜑 → (𝜑𝜓))

Proof of Theorem poe-P1.11a
StepHypRef Expression
1 ax-L1 11 . 2 𝜑 → (¬ 𝜓 → ¬ 𝜑))
2 ax-L3 13 . 2 ((¬ 𝜓 → ¬ 𝜑) → (𝜑𝜓))
31, 2syl-P1.2 34 1 𝜑 → (𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem is referenced by:  poe-P1.11b  66  clav-P1.12  68  dneg-P1.13a  71
  Copyright terms: Public domain W3C validator