PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  dsyl-P1.3

Theorem dsyl-P1.3 35
Description: Double Syllogism Inference.
Hypotheses
Ref Expression
dsyl-P1.3.1 (𝜑𝜓)
dsyl-P1.3.2 (𝜓𝜒)
dsyl-P1.3.3 (𝜒𝜗)
Assertion
Ref Expression
dsyl-P1.3 (𝜑𝜗)

Proof of Theorem dsyl-P1.3
StepHypRef Expression
1 dsyl-P1.3.1 . . 3 (𝜑𝜓)
2 dsyl-P1.3.2 . . 3 (𝜓𝜒)
31, 2syl-P1.2 34 . 2 (𝜑𝜒)
4 dsyl-P1.3.3 . 2 (𝜒𝜗)
53, 4syl-P1.2 34 1 (𝜑𝜗)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-MP 14
This theorem is referenced by:  orintl-P2.11a  146
  Copyright terms: Public domain W3C validator