PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  orintl-P2.11a

Theorem orintl-P2.11a 146
Description: Left Introduction Rule for ''.
Assertion
Ref Expression
orintl-P2.11a (𝜑 → (𝜓𝜑))

Proof of Theorem orintl-P2.11a
StepHypRef Expression
1 poe-P1.11b 66 . 2 (𝜑 → (¬ 𝜑𝜓))
2 trnsp-P1.15b 78 . 2 ((¬ 𝜑𝜓) → (¬ 𝜓𝜑))
3 df-or-D2.3 145 . . 3 ((𝜓𝜑) ↔ (¬ 𝜓𝜑))
43birev-P2.5b.SH 116 . 2 ((¬ 𝜓𝜑) → (𝜓𝜑))
51, 2, 4dsyl-P1.3 35 1 (𝜑 → (𝜓𝜑))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-or-D2.3 145
This theorem is referenced by:  orintl-P2.11a.AC.SH  147  exclmid-P2.12  152
  Copyright terms: Public domain W3C validator