PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  trnsp-P1.15b

Theorem trnsp-P1.15b 78
Description: Transposition Variant B.
Assertion
Ref Expression
trnsp-P1.15b ((¬ 𝜑𝜓) → (¬ 𝜓𝜑))

Proof of Theorem trnsp-P1.15b
StepHypRef Expression
1 dneg-P1.13b 72 . . 3 (𝜓 → ¬ ¬ 𝜓)
21imsubr-P1.7a.SH 52 . 2 ((¬ 𝜑𝜓) → (¬ 𝜑 → ¬ ¬ 𝜓))
3 ax-L3 13 . 2 ((¬ 𝜑 → ¬ ¬ 𝜓) → (¬ 𝜓𝜑))
42, 3syl-P1.2 34 1 ((¬ 𝜑𝜓) → (¬ 𝜓𝜑))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem is referenced by:  trnsp-P1.15b.AC.SH  79  pfbycase-P1.17  88  export-L2.1b  93  orintl-P2.11a  146
  Copyright terms: Public domain W3C validator