PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  export-L2.1b

Theorem export-L2.1b 93
Description: Exportation Lemma.
Assertion
Ref Expression
export-L2.1b ((¬ (𝜑 → ¬ 𝜓) → 𝜒) → (𝜑 → (𝜓𝜒)))

Proof of Theorem export-L2.1b
StepHypRef Expression
1 trnsp-P1.15b 78 . . 3 ((¬ (𝜑 → ¬ 𝜓) → 𝜒) → (¬ 𝜒 → (𝜑 → ¬ 𝜓)))
21imcomm-P1.6.AC.SH 50 . 2 ((¬ (𝜑 → ¬ 𝜓) → 𝜒) → (𝜑 → (¬ 𝜒 → ¬ 𝜓)))
32trnsp-P1.15d.2AC.SH 85 1 ((¬ (𝜑 → ¬ 𝜓) → 𝜒) → (𝜑 → (𝜓𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem is referenced by:  export-L2.1b.SH  94
  Copyright terms: Public domain W3C validator