PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  export-L2.1b.SH

Theorem export-L2.1b.SH 94
Description: Inference from export-L2.1b 93.
Hypothesis
Ref Expression
export-L2.1b.SH.1 (¬ (𝜑 → ¬ 𝜓) → 𝜒)
Assertion
Ref Expression
export-L2.1b.SH (𝜑 → (𝜓𝜒))

Proof of Theorem export-L2.1b.SH
StepHypRef Expression
1 export-L2.1b.SH.1 . 2 (¬ (𝜑 → ¬ 𝜓) → 𝜒)
2 export-L2.1b 93 . 2 ((¬ (𝜑 → ¬ 𝜓) → 𝜒) → (𝜑 → (𝜓𝜒)))
31, 2ax-MP 14 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem is referenced by:  cmb-L2.3  99
  Copyright terms: Public domain W3C validator