PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  cmb-L2.3

Theorem cmb-L2.3 99
Description: Combining Lemma.
Assertion
Ref Expression
cmb-L2.3 (𝜑 → (𝜓 → ¬ (𝜑 → ¬ 𝜓)))

Proof of Theorem cmb-L2.3
StepHypRef Expression
1 id-P1.4 36 . 2 (¬ (𝜑 → ¬ 𝜓) → ¬ (𝜑 → ¬ 𝜓))
21export-L2.1b.SH 94 1 (𝜑 → (𝜓 → ¬ (𝜑 → ¬ 𝜓)))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem is referenced by:  cmb-L2.3.2SH  100  bicmb-P2.5c  119  cmb-P2.9c  138
  Copyright terms: Public domain W3C validator