PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  cmb-P2.9c

Theorem cmb-P2.9c 138
Description: '' Introduction by Combination.
Assertion
Ref Expression
cmb-P2.9c (𝜑 → (𝜓 → (𝜑𝜓)))

Proof of Theorem cmb-P2.9c
StepHypRef Expression
1 cmb-L2.3 99 . 2 (𝜑 → (𝜓 → ¬ (𝜑 → ¬ 𝜓)))
2 df-and-D2.2 133 . . . . 5 ((𝜑𝜓) ↔ ¬ (𝜑 → ¬ 𝜓))
32subimr-P2.8b.SH 131 . . . 4 ((𝜓 → (𝜑𝜓)) ↔ (𝜓 → ¬ (𝜑 → ¬ 𝜓)))
43subimr-P2.8b.SH 131 . . 3 ((𝜑 → (𝜓 → (𝜑𝜓))) ↔ (𝜑 → (𝜓 → ¬ (𝜑 → ¬ 𝜓))))
54birev-P2.5b.SH 116 . 2 ((𝜑 → (𝜓 → ¬ (𝜑 → ¬ 𝜓))) → (𝜑 → (𝜓 → (𝜑𝜓))))
61, 5ax-MP 14 1 (𝜑 → (𝜓 → (𝜑𝜓)))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  cmb-P2.9c.AC.2SH  139  export-P2.10b  142
  Copyright terms: Public domain W3C validator