PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  export-P2.10b

Theorem export-P2.10b 142
Description: '' Exportation Law.
Assertion
Ref Expression
export-P2.10b (((𝜑𝜓) → 𝜒) → (𝜑 → (𝜓𝜒)))

Proof of Theorem export-P2.10b
StepHypRef Expression
1 cmb-P2.9c 138 . . 3 (𝜑 → (𝜓 → (𝜑𝜓)))
21axL1.SH 30 . 2 (((𝜑𝜓) → 𝜒) → (𝜑 → (𝜓 → (𝜑𝜓))))
3 ax-L1 11 . . 3 (((𝜑𝜓) → 𝜒) → (𝜓 → ((𝜑𝜓) → 𝜒)))
43axL1.AC.SH 45 . 2 (((𝜑𝜓) → 𝜒) → (𝜑 → (𝜓 → ((𝜑𝜓) → 𝜒))))
52, 4mpt-P1.8.3AC.2SH 60 1 (((𝜑𝜓) → 𝜒) → (𝜑 → (𝜓𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  export-P2.10b.SH  143
  Copyright terms: Public domain W3C validator