Proof of Theorem mpt-P1.8.3AC.2SH
| Step | Hyp | Ref
| Expression |
| 1 | | mpt-P1.8.3AC.2SH.2 |
. 2
⊢ (𝛾₁ → (𝛾₂ → (𝛾₃ → (𝜑
→ 𝜓)))) |
| 2 | | mpt-P1.8.3AC.2SH.1 |
. . . 4
⊢ (𝛾₁ → (𝛾₂ → (𝛾₃ → 𝜑))) |
| 3 | | mpt-P1.8 57 |
. . . . . . . 8
⊢ (𝜑 → ((𝜑 →
𝜓) → 𝜓)) |
| 4 | 3 | axL1.SH 30 |
. . . . . . 7
⊢ (𝛾₃ → (𝜑
→ ((𝜑 → 𝜓) → 𝜓))) |
| 5 | 4 | axL1.SH 30 |
. . . . . 6
⊢ (𝛾₂ → (𝛾₃ → (𝜑
→ ((𝜑 → 𝜓) → 𝜓)))) |
| 6 | 5 | axL1.SH 30 |
. . . . 5
⊢ (𝛾₁ → (𝛾₂ → (𝛾₃ → (𝜑
→ ((𝜑 → 𝜓) → 𝜓))))) |
| 7 | 6 | rcp-FR3.SH 44 |
. . . 4
⊢ ((𝛾₁ → (𝛾₂ → (𝛾₃ → 𝜑)))
→ (𝛾₁ → (𝛾₂ → (𝛾₃ → ((𝜑
→ 𝜓) → 𝜓))))) |
| 8 | 2, 7 | ax-MP 14 |
. . 3
⊢ (𝛾₁ → (𝛾₂ → (𝛾₃ → ((𝜑
→ 𝜓) → 𝜓)))) |
| 9 | 8 | rcp-FR3.SH 44 |
. 2
⊢ ((𝛾₁ → (𝛾₂ → (𝛾₃ → (𝜑
→ 𝜓)))) → (𝛾₁ → (𝛾₂ → (𝛾₃ → 𝜓)))) |
| 10 | 1, 9 | ax-MP 14 |
1
⊢ (𝛾₁ → (𝛾₂ → (𝛾₃ → 𝜓))) |