PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  mpt-P1.8.3AC.2SH

Theorem mpt-P1.8.3AC.2SH 60
Description: Another Deductive Form of mpt-P1.8 57.
Hypotheses
Ref Expression
mpt-P1.8.3AC.2SH.1 (𝛾₁ → (𝛾₂ → (𝛾₃𝜑)))
mpt-P1.8.3AC.2SH.2 (𝛾₁ → (𝛾₂ → (𝛾₃ → (𝜑𝜓))))
Assertion
Ref Expression
mpt-P1.8.3AC.2SH (𝛾₁ → (𝛾₂ → (𝛾₃𝜓)))

Proof of Theorem mpt-P1.8.3AC.2SH
StepHypRef Expression
1 mpt-P1.8.3AC.2SH.2 . 2 (𝛾₁ → (𝛾₂ → (𝛾₃ → (𝜑𝜓))))
2 mpt-P1.8.3AC.2SH.1 . . . 4 (𝛾₁ → (𝛾₂ → (𝛾₃𝜑)))
3 mpt-P1.8 57 . . . . . . . 8 (𝜑 → ((𝜑𝜓) → 𝜓))
43axL1.SH 30 . . . . . . 7 (𝛾₃ → (𝜑 → ((𝜑𝜓) → 𝜓)))
54axL1.SH 30 . . . . . 6 (𝛾₂ → (𝛾₃ → (𝜑 → ((𝜑𝜓) → 𝜓))))
65axL1.SH 30 . . . . 5 (𝛾₁ → (𝛾₂ → (𝛾₃ → (𝜑 → ((𝜑𝜓) → 𝜓)))))
76rcp-FR3.SH 44 . . . 4 ((𝛾₁ → (𝛾₂ → (𝛾₃𝜑))) → (𝛾₁ → (𝛾₂ → (𝛾₃ → ((𝜑𝜓) → 𝜓)))))
82, 7ax-MP 14 . . 3 (𝛾₁ → (𝛾₂ → (𝛾₃ → ((𝜑𝜓) → 𝜓))))
98rcp-FR3.SH 44 . 2 ((𝛾₁ → (𝛾₂ → (𝛾₃ → (𝜑𝜓)))) → (𝛾₁ → (𝛾₂ → (𝛾₃𝜓))))
101, 9ax-MP 14 1 (𝛾₁ → (𝛾₂ → (𝛾₃𝜓)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-MP 14
This theorem is referenced by:  export-P2.10b  142
  Copyright terms: Public domain W3C validator