PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-FR3.SH

Theorem rcp-FR3.SH 44
Description: Inference from rcp-FR3 43.
Hypothesis
Ref Expression
rcp-FR3.SH.1 (𝛾₃ → (𝛾₂ → (𝛾₁ → (𝜑𝜓))))
Assertion
Ref Expression
rcp-FR3.SH ((𝛾₃ → (𝛾₂ → (𝛾₁𝜑))) → (𝛾₃ → (𝛾₂ → (𝛾₁𝜓))))

Proof of Theorem rcp-FR3.SH
StepHypRef Expression
1 rcp-FR3.SH.1 . 2 (𝛾₃ → (𝛾₂ → (𝛾₁ → (𝜑𝜓))))
2 rcp-FR3 43 . 2 ((𝛾₃ → (𝛾₂ → (𝛾₁ → (𝜑𝜓)))) → ((𝛾₃ → (𝛾₂ → (𝛾₁𝜑))) → (𝛾₃ → (𝛾₂ → (𝛾₁𝜓)))))
31, 2ax-MP 14 1 ((𝛾₃ → (𝛾₂ → (𝛾₁𝜑))) → (𝛾₃ → (𝛾₂ → (𝛾₁𝜓))))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-MP 14
This theorem is referenced by:  mpt-P1.8.3AC.2SH  60
  Copyright terms: Public domain W3C validator