Proof of Theorem rcp-FR3
| Step | Hyp | Ref
| Expression |
| 1 | | rcp-FR2 41 |
. . . 4
⊢ ((𝛾₂ → (𝛾₁ → (𝜑
→ 𝜓))) → ((𝛾₂ → (𝛾₁ → 𝜑))
→ (𝛾₂ → (𝛾₁ → 𝜓)))) |
| 2 | 1 | axL1.SH 30 |
. . 3
⊢ (𝛾₃ → ((𝛾₂ → (𝛾₁ → (𝜑
→ 𝜓))) → ((𝛾₂ → (𝛾₁ → 𝜑))
→ (𝛾₂ → (𝛾₁ → 𝜓))))) |
| 3 | 2 | axL2.SH 31 |
. 2
⊢ ((𝛾₃ → (𝛾₂ → (𝛾₁ → (𝜑
→ 𝜓)))) → (𝛾₃ → ((𝛾₂ → (𝛾₁ → 𝜑))
→ (𝛾₂ → (𝛾₁ → 𝜓))))) |
| 4 | | ax-L2 12 |
. 2
⊢ ((𝛾₃ → ((𝛾₂ → (𝛾₁ → 𝜑))
→ (𝛾₂ → (𝛾₁ → 𝜓))))
→ ((𝛾₃ → (𝛾₂ → (𝛾₁ → 𝜑)))
→ (𝛾₃ → (𝛾₂ → (𝛾₁ → 𝜓))))) |
| 5 | 3, 4 | syl-P1.2 34 |
1
⊢ ((𝛾₃ → (𝛾₂ → (𝛾₁ → (𝜑
→ 𝜓)))) → ((𝛾₃ → (𝛾₂ → (𝛾₁ → 𝜑)))
→ (𝛾₃ → (𝛾₂ → (𝛾₁ → 𝜓))))) |