PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-FR3

Theorem rcp-FR3 43
Description: Frege Axiom with 3 Antecedents.
Assertion
Ref Expression
rcp-FR3 ((𝛾₃ → (𝛾₂ → (𝛾₁ → (𝜑𝜓)))) → ((𝛾₃ → (𝛾₂ → (𝛾₁𝜑))) → (𝛾₃ → (𝛾₂ → (𝛾₁𝜓)))))

Proof of Theorem rcp-FR3
StepHypRef Expression
1 rcp-FR2 41 . . . 4 ((𝛾₂ → (𝛾₁ → (𝜑𝜓))) → ((𝛾₂ → (𝛾₁𝜑)) → (𝛾₂ → (𝛾₁𝜓))))
21axL1.SH 30 . . 3 (𝛾₃ → ((𝛾₂ → (𝛾₁ → (𝜑𝜓))) → ((𝛾₂ → (𝛾₁𝜑)) → (𝛾₂ → (𝛾₁𝜓)))))
32axL2.SH 31 . 2 ((𝛾₃ → (𝛾₂ → (𝛾₁ → (𝜑𝜓)))) → (𝛾₃ → ((𝛾₂ → (𝛾₁𝜑)) → (𝛾₂ → (𝛾₁𝜓)))))
4 ax-L2 12 . 2 ((𝛾₃ → ((𝛾₂ → (𝛾₁𝜑)) → (𝛾₂ → (𝛾₁𝜓)))) → ((𝛾₃ → (𝛾₂ → (𝛾₁𝜑))) → (𝛾₃ → (𝛾₂ → (𝛾₁𝜓)))))
53, 4syl-P1.2 34 1 ((𝛾₃ → (𝛾₂ → (𝛾₁ → (𝜑𝜓)))) → ((𝛾₃ → (𝛾₂ → (𝛾₁𝜑))) → (𝛾₃ → (𝛾₂ → (𝛾₁𝜓)))))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-MP 14
This theorem is referenced by:  rcp-FR3.SH  44
  Copyright terms: Public domain W3C validator