PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-FR2.SH

Theorem rcp-FR2.SH 42
Description: Inference from rcp-FR2 41.
Hypothesis
Ref Expression
rcp-FR2.SH.1 (𝛾₂ → (𝛾₁ → (𝜑𝜓)))
Assertion
Ref Expression
rcp-FR2.SH ((𝛾₂ → (𝛾₁𝜑)) → (𝛾₂ → (𝛾₁𝜓)))

Proof of Theorem rcp-FR2.SH
StepHypRef Expression
1 rcp-FR2.SH.1 . 2 (𝛾₂ → (𝛾₁ → (𝜑𝜓)))
2 rcp-FR2 41 . 2 ((𝛾₂ → (𝛾₁ → (𝜑𝜓))) → ((𝛾₂ → (𝛾₁𝜑)) → (𝛾₂ → (𝛾₁𝜓))))
31, 2ax-MP 14 1 ((𝛾₂ → (𝛾₁𝜑)) → (𝛾₂ → (𝛾₁𝜓)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-MP 14
This theorem is referenced by:  mpt-P1.8.2AC.2SH  59  sylt-P1.9.2AC.2SH  63  clav-P1.12.2AC.SH  70  nclav-P1.14.2AC.SH  75  trnsp-P1.15d.2AC.SH  85  bifwd-P2.5a.2AC.SH  114  birev-P2.5b.2AC.SH  118  bicmb-P2.5c.2AC.2SH  122
  Copyright terms: Public domain W3C validator