| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > rcp-FR2.SH | |||
| Description: Inference from rcp-FR2 41. |
| Ref | Expression |
|---|---|
| rcp-FR2.SH.1 | ⊢ (𝛾₂ → (𝛾₁ → (𝜑 → 𝜓))) |
| Ref | Expression |
|---|---|
| rcp-FR2.SH | ⊢ ((𝛾₂ → (𝛾₁ → 𝜑)) → (𝛾₂ → (𝛾₁ → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-FR2.SH.1 | . 2 ⊢ (𝛾₂ → (𝛾₁ → (𝜑 → 𝜓))) | |
| 2 | rcp-FR2 41 | . 2 ⊢ ((𝛾₂ → (𝛾₁ → (𝜑 → 𝜓))) → ((𝛾₂ → (𝛾₁ → 𝜑)) → (𝛾₂ → (𝛾₁ → 𝜓)))) | |
| 3 | 1, 2 | ax-MP 14 | 1 ⊢ ((𝛾₂ → (𝛾₁ → 𝜑)) → (𝛾₂ → (𝛾₁ → 𝜓))) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-MP 14 |
| This theorem is referenced by: mpt-P1.8.2AC.2SH 59 sylt-P1.9.2AC.2SH 63 clav-P1.12.2AC.SH 70 nclav-P1.14.2AC.SH 75 trnsp-P1.15d.2AC.SH 85 bifwd-P2.5a.2AC.SH 114 birev-P2.5b.2AC.SH 118 bicmb-P2.5c.2AC.2SH 122 |
| Copyright terms: Public domain | W3C validator |