PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  trnsp-P1.15d.2AC.SH

Theorem trnsp-P1.15d.2AC.SH 85
Description: Another Deductive Form of trnsp-P1.15d 83.
Hypothesis
Ref Expression
trnsp-P1.15d.2AC.SH.1 (𝛾₁ → (𝛾₂ → (¬ 𝜑 → ¬ 𝜓)))
Assertion
Ref Expression
trnsp-P1.15d.2AC.SH (𝛾₁ → (𝛾₂ → (𝜓𝜑)))

Proof of Theorem trnsp-P1.15d.2AC.SH
StepHypRef Expression
1 trnsp-P1.15d.2AC.SH.1 . 2 (𝛾₁ → (𝛾₂ → (¬ 𝜑 → ¬ 𝜓)))
2 trnsp-P1.15d 83 . . . . 5 ((¬ 𝜑 → ¬ 𝜓) → (𝜓𝜑))
32axL1.SH 30 . . . 4 (𝛾₂ → ((¬ 𝜑 → ¬ 𝜓) → (𝜓𝜑)))
43axL1.SH 30 . . 3 (𝛾₁ → (𝛾₂ → ((¬ 𝜑 → ¬ 𝜓) → (𝜓𝜑))))
54rcp-FR2.SH 42 . 2 ((𝛾₁ → (𝛾₂ → (¬ 𝜑 → ¬ 𝜓))) → (𝛾₁ → (𝛾₂ → (𝜓𝜑))))
61, 5ax-MP 14 1 (𝛾₁ → (𝛾₂ → (𝜓𝜑)))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem is referenced by:  export-L2.1b  93
  Copyright terms: Public domain W3C validator