PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  pfbycont-P1.16

Theorem pfbycont-P1.16 86
Description: Proof by Contradiction.
Assertion
Ref Expression
pfbycont-P1.16 ((𝜑𝜓) → ((𝜑 → ¬ 𝜓) → ¬ 𝜑))

Proof of Theorem pfbycont-P1.16
StepHypRef Expression
1 ax-L1 11 . . 3 ((𝜑𝜓) → ((𝜑 → ¬ 𝜓) → (𝜑𝜓)))
2 trnsp-P1.15a 76 . . . 4 ((𝜑 → ¬ 𝜓) → (𝜓 → ¬ 𝜑))
32axL1.SH 30 . . 3 ((𝜑𝜓) → ((𝜑 → ¬ 𝜓) → (𝜓 → ¬ 𝜑)))
41, 3sylt-P1.9.2AC.2SH 63 . 2 ((𝜑𝜓) → ((𝜑 → ¬ 𝜓) → (𝜑 → ¬ 𝜑)))
54nclav-P1.14.2AC.SH 75 1 ((𝜑𝜓) → ((𝜑 → ¬ 𝜓) → ¬ 𝜑))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem is referenced by:  pfbycont-P1.16.AC.2SH  87
  Copyright terms: Public domain W3C validator