| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > pfbycont-P1.16 | |||
| Description: Proof by Contradiction. |
| Ref | Expression |
|---|---|
| pfbycont-P1.16 | ⊢ ((𝜑 → 𝜓) → ((𝜑 → ¬ 𝜓) → ¬ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-L1 11 | . . 3 ⊢ ((𝜑 → 𝜓) → ((𝜑 → ¬ 𝜓) → (𝜑 → 𝜓))) | |
| 2 | trnsp-P1.15a 76 | . . . 4 ⊢ ((𝜑 → ¬ 𝜓) → (𝜓 → ¬ 𝜑)) | |
| 3 | 2 | axL1.SH 30 | . . 3 ⊢ ((𝜑 → 𝜓) → ((𝜑 → ¬ 𝜓) → (𝜓 → ¬ 𝜑))) |
| 4 | 1, 3 | sylt-P1.9.2AC.2SH 63 | . 2 ⊢ ((𝜑 → 𝜓) → ((𝜑 → ¬ 𝜓) → (𝜑 → ¬ 𝜑))) |
| 5 | 4 | nclav-P1.14.2AC.SH 75 | 1 ⊢ ((𝜑 → 𝜓) → ((𝜑 → ¬ 𝜓) → ¬ 𝜑)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 → wff-imp 10 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem is referenced by: pfbycont-P1.16.AC.2SH 87 |
| Copyright terms: Public domain | W3C validator |