PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  pfbycont-P1.16.AC.2SH

Theorem pfbycont-P1.16.AC.2SH 87
Description: Deductive Form of pfbycont-P1.16 86.
Hypotheses
Ref Expression
pfbycont-P1.16.AC.2SH.1 (𝛾 → (𝜑𝜓))
pfbycont-P1.16.AC.2SH.2 (𝛾 → (𝜑 → ¬ 𝜓))
Assertion
Ref Expression
pfbycont-P1.16.AC.2SH (𝛾 → ¬ 𝜑)

Proof of Theorem pfbycont-P1.16.AC.2SH
StepHypRef Expression
1 pfbycont-P1.16.AC.2SH.2 . 2 (𝛾 → (𝜑 → ¬ 𝜓))
2 pfbycont-P1.16.AC.2SH.1 . . . 4 (𝛾 → (𝜑𝜓))
3 pfbycont-P1.16 86 . . . . . 6 ((𝜑𝜓) → ((𝜑 → ¬ 𝜓) → ¬ 𝜑))
43axL1.SH 30 . . . . 5 (𝛾 → ((𝜑𝜓) → ((𝜑 → ¬ 𝜓) → ¬ 𝜑)))
54rcp-FR1.SH 40 . . . 4 ((𝛾 → (𝜑𝜓)) → (𝛾 → ((𝜑 → ¬ 𝜓) → ¬ 𝜑)))
62, 5ax-MP 14 . . 3 (𝛾 → ((𝜑 → ¬ 𝜓) → ¬ 𝜑))
76rcp-FR1.SH 40 . 2 ((𝛾 → (𝜑 → ¬ 𝜓)) → (𝛾 → ¬ 𝜑))
81, 7ax-MP 14 1 (𝛾 → ¬ 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem is referenced by:  ndnegi-P3.3  168
  Copyright terms: Public domain W3C validator