PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  pfbycase-P1.17

Theorem pfbycase-P1.17 88
Description: Proof by Cases.
Assertion
Ref Expression
pfbycase-P1.17 ((𝜑𝜓) → ((¬ 𝜑𝜓) → 𝜓))

Proof of Theorem pfbycase-P1.17
StepHypRef Expression
1 trnsp-P1.15b 78 . . . 4 ((¬ 𝜑𝜓) → (¬ 𝜓𝜑))
21axL1.SH 30 . . 3 ((𝜑𝜓) → ((¬ 𝜑𝜓) → (¬ 𝜓𝜑)))
3 ax-L1 11 . . 3 ((𝜑𝜓) → ((¬ 𝜑𝜓) → (𝜑𝜓)))
42, 3sylt-P1.9.2AC.2SH 63 . 2 ((𝜑𝜓) → ((¬ 𝜑𝜓) → (¬ 𝜓𝜓)))
54clav-P1.12.2AC.SH 70 1 ((𝜑𝜓) → ((¬ 𝜑𝜓) → 𝜓))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem is referenced by:  pfbycase-P1.17.2SH  89  pfbycase-P1.17.AC.2SH  90
  Copyright terms: Public domain W3C validator