| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > pfbycase-P1.17 | |||
| Description: Proof by Cases. |
| Ref | Expression |
|---|---|
| pfbycase-P1.17 | ⊢ ((𝜑 → 𝜓) → ((¬ 𝜑 → 𝜓) → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trnsp-P1.15b 78 | . . . 4 ⊢ ((¬ 𝜑 → 𝜓) → (¬ 𝜓 → 𝜑)) | |
| 2 | 1 | axL1.SH 30 | . . 3 ⊢ ((𝜑 → 𝜓) → ((¬ 𝜑 → 𝜓) → (¬ 𝜓 → 𝜑))) |
| 3 | ax-L1 11 | . . 3 ⊢ ((𝜑 → 𝜓) → ((¬ 𝜑 → 𝜓) → (𝜑 → 𝜓))) | |
| 4 | 2, 3 | sylt-P1.9.2AC.2SH 63 | . 2 ⊢ ((𝜑 → 𝜓) → ((¬ 𝜑 → 𝜓) → (¬ 𝜓 → 𝜓))) |
| 5 | 4 | clav-P1.12.2AC.SH 70 | 1 ⊢ ((𝜑 → 𝜓) → ((¬ 𝜑 → 𝜓) → 𝜓)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 → wff-imp 10 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem is referenced by: pfbycase-P1.17.2SH 89 pfbycase-P1.17.AC.2SH 90 |
| Copyright terms: Public domain | W3C validator |