PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  pfbycase-P1.17.2SH

Theorem pfbycase-P1.17.2SH 89
Description: Inference from pfbycase-P1.17 88
Hypotheses
Ref Expression
pfbycase-P1.17.2SH.1 (𝜑𝜓)
pfbycase-P1.17.2SH.2 𝜑𝜓)
Assertion
Ref Expression
pfbycase-P1.17.2SH 𝜓

Proof of Theorem pfbycase-P1.17.2SH
StepHypRef Expression
1 pfbycase-P1.17.2SH.2 . 2 𝜑𝜓)
2 pfbycase-P1.17.2SH.1 . . 3 (𝜑𝜓)
3 pfbycase-P1.17 88 . . 3 ((𝜑𝜓) → ((¬ 𝜑𝜓) → 𝜓))
42, 3ax-MP 14 . 2 ((¬ 𝜑𝜓) → 𝜓)
51, 4ax-MP 14 1 𝜓
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem is referenced by:  exclmid-P2.12  152
  Copyright terms: Public domain W3C validator