PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  exclmid-P2.12

Theorem exclmid-P2.12 152
Description: Law of Excluded Middle.
Assertion
Ref Expression
exclmid-P2.12 (𝜑 ∨ ¬ 𝜑)

Proof of Theorem exclmid-P2.12
StepHypRef Expression
1 orintr-P2.11b 148 . 2 (𝜑 → (𝜑 ∨ ¬ 𝜑))
2 orintl-P2.11a 146 . 2 𝜑 → (𝜑 ∨ ¬ 𝜑))
31, 2pfbycase-P1.17.2SH 89 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-or-D2.3 145
This theorem is referenced by:  ndexclmid-P3.16  181
  Copyright terms: Public domain W3C validator