PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  orelim-P2.11c.AC.3SH

Theorem orelim-P2.11c.AC.3SH 151
Description: Deductive Form of orelim-P2.11c 150.
Hypotheses
Ref Expression
orelim-P2.11c.AC.3SH.1 (𝛾 → (𝜑𝜒))
orelim-P2.11c.AC.3SH.2 (𝛾 → (𝜓𝜒))
orelim-P2.11c.AC.3SH.3 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
orelim-P2.11c.AC.3SH (𝛾𝜒)

Proof of Theorem orelim-P2.11c.AC.3SH
StepHypRef Expression
1 orelim-P2.11c.AC.3SH.3 . 2 (𝛾 → (𝜑𝜓))
2 orelim-P2.11c.AC.3SH.2 . . . 4 (𝛾 → (𝜓𝜒))
3 orelim-P2.11c.AC.3SH.1 . . . . . 6 (𝛾 → (𝜑𝜒))
4 orelim-P2.11c 150 . . . . . . . 8 ((𝜑𝜒) → ((𝜓𝜒) → ((𝜑𝜓) → 𝜒)))
54axL1.SH 30 . . . . . . 7 (𝛾 → ((𝜑𝜒) → ((𝜓𝜒) → ((𝜑𝜓) → 𝜒))))
65rcp-FR1.SH 40 . . . . . 6 ((𝛾 → (𝜑𝜒)) → (𝛾 → ((𝜓𝜒) → ((𝜑𝜓) → 𝜒))))
73, 6ax-MP 14 . . . . 5 (𝛾 → ((𝜓𝜒) → ((𝜑𝜓) → 𝜒)))
87rcp-FR1.SH 40 . . . 4 ((𝛾 → (𝜓𝜒)) → (𝛾 → ((𝜑𝜓) → 𝜒)))
92, 8ax-MP 14 . . 3 (𝛾 → ((𝜑𝜓) → 𝜒))
109axL2.SH 31 . 2 ((𝛾 → (𝜑𝜓)) → (𝛾𝜒))
111, 10ax-MP 14 1 (𝛾𝜒)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145
This theorem is referenced by:  ndore-P3.12  177
  Copyright terms: Public domain W3C validator