Proof of Theorem orelim-P2.11c.AC.3SH
| Step | Hyp | Ref
| Expression |
| 1 | | orelim-P2.11c.AC.3SH.3 |
. 2
⊢ (𝛾 → (𝜑 ∨ 𝜓)) |
| 2 | | orelim-P2.11c.AC.3SH.2 |
. . . 4
⊢ (𝛾 → (𝜓 →
𝜒)) |
| 3 | | orelim-P2.11c.AC.3SH.1 |
. . . . . 6
⊢ (𝛾 → (𝜑 →
𝜒)) |
| 4 | | orelim-P2.11c 150 |
. . . . . . . 8
⊢ ((𝜑 → 𝜒) →
((𝜓 → 𝜒)
→ ((𝜑 ∨ 𝜓) → 𝜒))) |
| 5 | 4 | axL1.SH 30 |
. . . . . . 7
⊢ (𝛾 → ((𝜑 →
𝜒) → ((𝜓
→ 𝜒) → ((𝜑 ∨ 𝜓) → 𝜒)))) |
| 6 | 5 | rcp-FR1.SH 40 |
. . . . . 6
⊢ ((𝛾 → (𝜑 →
𝜒)) → (𝛾
→ ((𝜓 → 𝜒) → ((𝜑 ∨
𝜓) → 𝜒)))) |
| 7 | 3, 6 | ax-MP 14 |
. . . . 5
⊢ (𝛾 → ((𝜓 →
𝜒) → ((𝜑
∨ 𝜓) → 𝜒))) |
| 8 | 7 | rcp-FR1.SH 40 |
. . . 4
⊢ ((𝛾 → (𝜓 →
𝜒)) → (𝛾
→ ((𝜑 ∨ 𝜓) → 𝜒))) |
| 9 | 2, 8 | ax-MP 14 |
. . 3
⊢ (𝛾 → ((𝜑 ∨
𝜓) → 𝜒)) |
| 10 | 9 | axL2.SH 31 |
. 2
⊢ ((𝛾 → (𝜑 ∨ 𝜓)) → (𝛾 →
𝜒)) |
| 11 | 1, 10 | ax-MP 14 |
1
⊢ (𝛾 → 𝜒) |