| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > ndnegi-P3.3 | |||
| Description: Natural Deduction: '¬' Introduction Rule.
If an assumption leads to a contradiction, then we can discharge it and conclude its negation. |
| Ref | Expression |
|---|---|
| ndnegi-P3.3.1 | ⊢ ((𝛾 ∧ 𝜑) → 𝜓) |
| ndnegi-P3.3.2 | ⊢ ((𝛾 ∧ 𝜑) → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| ndnegi-P3.3 | ⊢ (𝛾 → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndnegi-P3.3.1 | . . 3 ⊢ ((𝛾 ∧ 𝜑) → 𝜓) | |
| 2 | 1 | export-P2.10b.SH 143 | . 2 ⊢ (𝛾 → (𝜑 → 𝜓)) |
| 3 | ndnegi-P3.3.2 | . . 3 ⊢ ((𝛾 ∧ 𝜑) → ¬ 𝜓) | |
| 4 | 3 | export-P2.10b.SH 143 | . 2 ⊢ (𝛾 → (𝜑 → ¬ 𝜓)) |
| 5 | 2, 4 | pfbycont-P1.16.AC.2SH 87 | 1 ⊢ (𝛾 → ¬ 𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 → wff-imp 10 ∧ wff-and 132 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 |
| This theorem is referenced by: rcp-NDNEGI1 218 rcp-NDNEGI2 219 rcp-NDNEGI3 220 rcp-NDNEGI4 221 rcp-NDNEGI5 222 raa-P4 514 |
| Copyright terms: Public domain | W3C validator |