PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndnegi-P3.3

Theorem ndnegi-P3.3 168
Description: Natural Deduction: '¬' Introduction Rule.

If an assumption leads to a contradiction, then we can discharge it and conclude its negation.

Hypotheses
Ref Expression
ndnegi-P3.3.1 ((𝛾𝜑) → 𝜓)
ndnegi-P3.3.2 ((𝛾𝜑) → ¬ 𝜓)
Assertion
Ref Expression
ndnegi-P3.3 (𝛾 → ¬ 𝜑)

Proof of Theorem ndnegi-P3.3
StepHypRef Expression
1 ndnegi-P3.3.1 . . 3 ((𝛾𝜑) → 𝜓)
21export-P2.10b.SH 143 . 2 (𝛾 → (𝜑𝜓))
3 ndnegi-P3.3.2 . . 3 ((𝛾𝜑) → ¬ 𝜓)
43export-P2.10b.SH 143 . 2 (𝛾 → (𝜑 → ¬ 𝜓))
52, 4pfbycont-P1.16.AC.2SH 87 1 (𝛾 → ¬ 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  rcp-NDNEGI1  218  rcp-NDNEGI2  219  rcp-NDNEGI3  220  rcp-NDNEGI4  221  rcp-NDNEGI5  222  raa-P4  514
  Copyright terms: Public domain W3C validator