| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > rcp-NDNEGI1 | |||
| Description: ¬ Introduction Recipe. † |
| Ref | Expression |
|---|---|
| rcp-NDNEGI1.1 | ⊢ (𝛾₁ → 𝜑) |
| rcp-NDNEGI1.2 | ⊢ (𝛾₁ → ¬ 𝜑) |
| Ref | Expression |
|---|---|
| rcp-NDNEGI1 | ⊢ ¬ 𝛾₁ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-NDASM2of2 194 | . . . 4 ⊢ ((⊤ ∧ 𝛾₁) → 𝛾₁) | |
| 2 | rcp-NDNEGI1.1 | . . . . 5 ⊢ (𝛾₁ → 𝜑) | |
| 3 | 2 | rcp-NDIMP0addall 207 | . . . 4 ⊢ ((⊤ ∧ 𝛾₁) → (𝛾₁ → 𝜑)) |
| 4 | 1, 3 | ndime-P3.6 171 | . . 3 ⊢ ((⊤ ∧ 𝛾₁) → 𝜑) |
| 5 | rcp-NDNEGI1.2 | . . . . 5 ⊢ (𝛾₁ → ¬ 𝜑) | |
| 6 | 5 | rcp-NDIMP0addall 207 | . . . 4 ⊢ ((⊤ ∧ 𝛾₁) → (𝛾₁ → ¬ 𝜑)) |
| 7 | 1, 6 | ndime-P3.6 171 | . . 3 ⊢ ((⊤ ∧ 𝛾₁) → ¬ 𝜑) |
| 8 | 4, 7 | ndnegi-P3.3 168 | . 2 ⊢ (⊤ → ¬ 𝛾₁) |
| 9 | 8 | ndtruee-P3.18 183 | 1 ⊢ ¬ 𝛾₁ |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 → wff-imp 10 ∧ wff-and 132 ⊤wff-true 153 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 |
| This theorem is referenced by: ncontra-P4.1 366 rcp-RAA1 515 example-E7.1b 1075 |
| Copyright terms: Public domain | W3C validator |