PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-NDNEGI1

Theorem rcp-NDNEGI1 218
Description: ¬ Introduction Recipe.
Hypotheses
Ref Expression
rcp-NDNEGI1.1 (𝛾₁𝜑)
rcp-NDNEGI1.2 (𝛾₁ → ¬ 𝜑)
Assertion
Ref Expression
rcp-NDNEGI1 ¬ 𝛾₁

Proof of Theorem rcp-NDNEGI1
StepHypRef Expression
1 rcp-NDASM2of2 194 . . . 4 ((⊤ ∧ 𝛾₁) → 𝛾₁)
2 rcp-NDNEGI1.1 . . . . 5 (𝛾₁𝜑)
32rcp-NDIMP0addall 207 . . . 4 ((⊤ ∧ 𝛾₁) → (𝛾₁𝜑))
41, 3ndime-P3.6 171 . . 3 ((⊤ ∧ 𝛾₁) → 𝜑)
5 rcp-NDNEGI1.2 . . . . 5 (𝛾₁ → ¬ 𝜑)
65rcp-NDIMP0addall 207 . . . 4 ((⊤ ∧ 𝛾₁) → (𝛾₁ → ¬ 𝜑))
71, 6ndime-P3.6 171 . . 3 ((⊤ ∧ 𝛾₁) → ¬ 𝜑)
84, 7ndnegi-P3.3 168 . 2 (⊤ → ¬ 𝛾₁)
98ndtruee-P3.18 183 1 ¬ 𝛾₁
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  ncontra-P4.1  366  rcp-RAA1  515  example-E7.1b  1075
  Copyright terms: Public domain W3C validator