PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-RAA1

Theorem rcp-RAA1 515
Description: Reductio ad Absurdum.
Hypotheses
Ref Expression
rcp-RAA1.1 𝛾₁𝜑)
rcp-RAA1.2 𝛾₁ → ¬ 𝜑)
Assertion
Ref Expression
rcp-RAA1 𝛾₁

Proof of Theorem rcp-RAA1
StepHypRef Expression
1 rcp-RAA1.1 . . 3 𝛾₁𝜑)
2 rcp-RAA1.2 . . 3 𝛾₁ → ¬ 𝜑)
31, 2rcp-NDNEGI1 218 . 2 ¬ ¬ 𝛾₁
43dnege-P3.30.RC 277 1 𝛾₁
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator