PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  raa-P4

Theorem raa-P4 514
Description: Reductio ad Absurdum.

This rule combines ndnegi-P3.3 168 with double negative elimination, and is thus dependent on the Law of Excluded Middle.

Hypotheses
Ref Expression
raa-P4.1 ((𝛾 ∧ ¬ 𝜑) → 𝜓)
raa-P4.2 ((𝛾 ∧ ¬ 𝜑) → ¬ 𝜓)
Assertion
Ref Expression
raa-P4 (𝛾𝜑)

Proof of Theorem raa-P4
StepHypRef Expression
1 raa-P4.1 . . 3 ((𝛾 ∧ ¬ 𝜑) → 𝜓)
2 raa-P4.2 . . 3 ((𝛾 ∧ ¬ 𝜑) → ¬ 𝜓)
31, 2ndnegi-P3.3 168 . 2 (𝛾 → ¬ ¬ 𝜑)
43dnege-P3.30 276 1 (𝛾𝜑)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator