PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-RAA2

Theorem rcp-RAA2 516
Description: Reductio ad Absurdum.
Hypotheses
Ref Expression
rcp-RAA2.1 ((𝛾₁ ∧ ¬ 𝛾₂) → 𝜑)
rcp-RAA2.2 ((𝛾₁ ∧ ¬ 𝛾₂) → ¬ 𝜑)
Assertion
Ref Expression
rcp-RAA2 (𝛾₁𝛾₂)

Proof of Theorem rcp-RAA2
StepHypRef Expression
1 rcp-RAA2.1 . . 3 ((𝛾₁ ∧ ¬ 𝛾₂) → 𝜑)
2 rcp-RAA2.2 . . 3 ((𝛾₁ ∧ ¬ 𝛾₂) → ¬ 𝜑)
31, 2rcp-NDNEGI2 219 . 2 (𝛾₁ → ¬ ¬ 𝛾₂)
43dnege-P3.30 276 1 (𝛾₁𝛾₂)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator