| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > rcp-RAA2 | |||
| Description: Reductio ad Absurdum. |
| Ref | Expression |
|---|---|
| rcp-RAA2.1 | ⊢ ((𝛾₁ ∧ ¬ 𝛾₂) → 𝜑) |
| rcp-RAA2.2 | ⊢ ((𝛾₁ ∧ ¬ 𝛾₂) → ¬ 𝜑) |
| Ref | Expression |
|---|---|
| rcp-RAA2 | ⊢ (𝛾₁ → 𝛾₂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-RAA2.1 | . . 3 ⊢ ((𝛾₁ ∧ ¬ 𝛾₂) → 𝜑) | |
| 2 | rcp-RAA2.2 | . . 3 ⊢ ((𝛾₁ ∧ ¬ 𝛾₂) → ¬ 𝜑) | |
| 3 | 1, 2 | rcp-NDNEGI2 219 | . 2 ⊢ (𝛾₁ → ¬ ¬ 𝛾₂) |
| 4 | 3 | dnege-P3.30 276 | 1 ⊢ (𝛾₁ → 𝛾₂) |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 → wff-imp 10 ∧ wff-and 132 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |