PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ncontra-P4.1

Theorem ncontra-P4.1 366
Description: Law of Non-contradiction.
Assertion
Ref Expression
ncontra-P4.1 ¬ (𝜑 ∧ ¬ 𝜑)

Proof of Theorem ncontra-P4.1
StepHypRef Expression
1 rcp-NDASM1of2 193 . 2 ((𝜑 ∧ ¬ 𝜑) → 𝜑)
2 rcp-NDASM2of2 194 . 2 ((𝜑 ∧ ¬ 𝜑) → ¬ 𝜑)
31, 2rcp-NDNEGI1 218 1 ¬ (𝜑 ∧ ¬ 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  biasandor-P4.34a  491
  Copyright terms: Public domain W3C validator