PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  norel-P4.2a

Theorem norel-P4.2a 367
Description: Negated Left '' Elimination.
Hypothesis
Ref Expression
norel-P4.2a.1 (𝛾 → ¬ (𝜑𝜓))
Assertion
Ref Expression
norel-P4.2a (𝛾 → ¬ 𝜓)

Proof of Theorem norel-P4.2a
StepHypRef Expression
1 rcp-NDASM2of2 194 . . 3 ((𝛾𝜓) → 𝜓)
21ndoril-P3.10 175 . 2 ((𝛾𝜓) → (𝜑𝜓))
3 norel-P4.2a.1 . . 3 (𝛾 → ¬ (𝜑𝜓))
43rcp-NDIMP1add1 208 . 2 ((𝛾𝜓) → ¬ (𝜑𝜓))
52, 4rcp-NDNEGI2 219 1 (𝛾 → ¬ 𝜓)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145
This theorem is referenced by:  norel-P4.2a.RC  368  norel-P4.2a.CL  369
  Copyright terms: Public domain W3C validator