PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  norel-P4.2a.RC

Theorem norel-P4.2a.RC 368
Description: Inference Form of norel-P4.2a 367.
Hypothesis
Ref Expression
norel-P4.2a.RC.1 ¬ (𝜑𝜓)
Assertion
Ref Expression
norel-P4.2a.RC ¬ 𝜓

Proof of Theorem norel-P4.2a.RC
StepHypRef Expression
1 norel-P4.2a.RC.1 . . . 4 ¬ (𝜑𝜓)
21ndtruei-P3.17 182 . . 3 (⊤ → ¬ (𝜑𝜓))
32norel-P4.2a 367 . 2 (⊤ → ¬ 𝜓)
43ndtruee-P3.18 183 1 ¬ 𝜓
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-or 144  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator