PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndoril-P3.10

Theorem ndoril-P3.10 175
Description: Natural Deduction: Left '' Introduction Rule.

Deduce a new disjunction containing an arbitrary WFF to the left of a previously deduced WFF.

Hypothesis
Ref Expression
ndoril-P3.10.1 (𝛾𝜑)
Assertion
Ref Expression
ndoril-P3.10 (𝛾 → (𝜓𝜑))

Proof of Theorem ndoril-P3.10
StepHypRef Expression
1 ndoril-P3.10.1 . 2 (𝛾𝜑)
21orintl-P2.11a.AC.SH 147 1 (𝛾 → (𝜓𝜑))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-or-D2.3 145
This theorem is referenced by:  rcp-NDORIL0  232  ndoril-P3.10.CL  245  orcomm-P3.37-L1  318  orassoc-P3.38-L1  320  orassoc-P3.38-L2  321  suborl-P3.43a-L1  345  orasim-P3.48-L2  360  norel-P4.2a  367  joinimandinc-P4.8a  397  joinimor-P4.8c  403  sepimorl-P4.9b  409  sepimorr-P4.9c  412  sepimandl-P4.9d  415  andoveror-P4.27-L1  459  andoveror-P4.27-L2  460  oroverand-P4.27-L3  462  oroverand-P4.27-L4  463  oroverim-P4.28-L2  466  imasor-P4.32-L1  485  peirce2exclmid-P4.41b  513
  Copyright terms: Public domain W3C validator