| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > ndoril-P3.10 | |||
| Description: Natural Deduction: Left
'∨' Introduction Rule.
Deduce a new disjunction containing an arbitrary WFF to the left of a previously deduced WFF. |
| Ref | Expression |
|---|---|
| ndoril-P3.10.1 | ⊢ (𝛾 → 𝜑) |
| Ref | Expression |
|---|---|
| ndoril-P3.10 | ⊢ (𝛾 → (𝜓 ∨ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndoril-P3.10.1 | . 2 ⊢ (𝛾 → 𝜑) | |
| 2 | 1 | orintl-P2.11a.AC.SH 147 | 1 ⊢ (𝛾 → (𝜓 ∨ 𝜑)) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ∨ wff-or 144 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-or-D2.3 145 |
| This theorem is referenced by: rcp-NDORIL0 232 ndoril-P3.10.CL 245 orcomm-P3.37-L1 318 orassoc-P3.38-L1 320 orassoc-P3.38-L2 321 suborl-P3.43a-L1 345 orasim-P3.48-L2 360 norel-P4.2a 367 joinimandinc-P4.8a 397 joinimor-P4.8c 403 sepimorl-P4.9b 409 sepimorr-P4.9c 412 sepimandl-P4.9d 415 andoveror-P4.27-L1 459 andoveror-P4.27-L2 460 oroverand-P4.27-L3 462 oroverand-P4.27-L4 463 oroverim-P4.28-L2 466 imasor-P4.32-L1 485 peirce2exclmid-P4.41b 513 |
| Copyright terms: Public domain | W3C validator |