Proof of Theorem andoveror-P4.27-L2
| Step | Hyp | Ref
| Expression |
| 1 | | rcp-NDASM2of2 194 |
. . . 4
⊢ ((((𝜑 ∧ 𝜓) ∨
(𝜑 ∧ 𝜒))
∧ (𝜑 ∧ 𝜓)) → (𝜑 ∧
𝜓)) |
| 2 | 1 | ndander-P3.9 174 |
. . 3
⊢ ((((𝜑 ∧ 𝜓) ∨
(𝜑 ∧ 𝜒))
∧ (𝜑 ∧ 𝜓)) → 𝜑) |
| 3 | 1 | ndandel-P3.8 173 |
. . . 4
⊢ ((((𝜑 ∧ 𝜓) ∨
(𝜑 ∧ 𝜒))
∧ (𝜑 ∧ 𝜓)) → 𝜓) |
| 4 | 3 | ndorir-P3.11 176 |
. . 3
⊢ ((((𝜑 ∧ 𝜓) ∨
(𝜑 ∧ 𝜒))
∧ (𝜑 ∧ 𝜓)) → (𝜓 ∨
𝜒)) |
| 5 | 2, 4 | ndandi-P3.7 172 |
. 2
⊢ ((((𝜑 ∧ 𝜓) ∨
(𝜑 ∧ 𝜒))
∧ (𝜑 ∧ 𝜓)) → (𝜑 ∧
(𝜓 ∨ 𝜒))) |
| 6 | | rcp-NDASM2of2 194 |
. . . 4
⊢ ((((𝜑 ∧ 𝜓) ∨
(𝜑 ∧ 𝜒))
∧ (𝜑 ∧ 𝜒)) → (𝜑 ∧
𝜒)) |
| 7 | 6 | ndander-P3.9 174 |
. . 3
⊢ ((((𝜑 ∧ 𝜓) ∨
(𝜑 ∧ 𝜒))
∧ (𝜑 ∧ 𝜒)) → 𝜑) |
| 8 | 6 | ndandel-P3.8 173 |
. . . 4
⊢ ((((𝜑 ∧ 𝜓) ∨
(𝜑 ∧ 𝜒))
∧ (𝜑 ∧ 𝜒)) → 𝜒) |
| 9 | 8 | ndoril-P3.10 175 |
. . 3
⊢ ((((𝜑 ∧ 𝜓) ∨
(𝜑 ∧ 𝜒))
∧ (𝜑 ∧ 𝜒)) → (𝜓 ∨
𝜒)) |
| 10 | 7, 9 | ndandi-P3.7 172 |
. 2
⊢ ((((𝜑 ∧ 𝜓) ∨
(𝜑 ∧ 𝜒))
∧ (𝜑 ∧ 𝜒)) → (𝜑 ∧
(𝜓 ∨ 𝜒))) |
| 11 | | rcp-NDASM1of1 192 |
. 2
⊢ (((𝜑 ∧ 𝜓) ∨
(𝜑 ∧ 𝜒))
→ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧
𝜒))) |
| 12 | 5, 10, 11 | rcp-NDORE2 235 |
1
⊢ (((𝜑 ∧ 𝜓) ∨
(𝜑 ∧ 𝜒))
→ (𝜑 ∧ (𝜓 ∨ 𝜒))) |