PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  andoveror-P4.27-L2

Theorem andoveror-P4.27-L2 460
Description: Lemma for andoveror-P4.27a 461.
Assertion
Ref Expression
andoveror-P4.27-L2 (((𝜑𝜓) ∨ (𝜑𝜒)) → (𝜑 ∧ (𝜓𝜒)))

Proof of Theorem andoveror-P4.27-L2
StepHypRef Expression
1 rcp-NDASM2of2 194 . . . 4 ((((𝜑𝜓) ∨ (𝜑𝜒)) ∧ (𝜑𝜓)) → (𝜑𝜓))
21ndander-P3.9 174 . . 3 ((((𝜑𝜓) ∨ (𝜑𝜒)) ∧ (𝜑𝜓)) → 𝜑)
31ndandel-P3.8 173 . . . 4 ((((𝜑𝜓) ∨ (𝜑𝜒)) ∧ (𝜑𝜓)) → 𝜓)
43ndorir-P3.11 176 . . 3 ((((𝜑𝜓) ∨ (𝜑𝜒)) ∧ (𝜑𝜓)) → (𝜓𝜒))
52, 4ndandi-P3.7 172 . 2 ((((𝜑𝜓) ∨ (𝜑𝜒)) ∧ (𝜑𝜓)) → (𝜑 ∧ (𝜓𝜒)))
6 rcp-NDASM2of2 194 . . . 4 ((((𝜑𝜓) ∨ (𝜑𝜒)) ∧ (𝜑𝜒)) → (𝜑𝜒))
76ndander-P3.9 174 . . 3 ((((𝜑𝜓) ∨ (𝜑𝜒)) ∧ (𝜑𝜒)) → 𝜑)
86ndandel-P3.8 173 . . . 4 ((((𝜑𝜓) ∨ (𝜑𝜒)) ∧ (𝜑𝜒)) → 𝜒)
98ndoril-P3.10 175 . . 3 ((((𝜑𝜓) ∨ (𝜑𝜒)) ∧ (𝜑𝜒)) → (𝜓𝜒))
107, 9ndandi-P3.7 172 . 2 ((((𝜑𝜓) ∨ (𝜑𝜒)) ∧ (𝜑𝜒)) → (𝜑 ∧ (𝜓𝜒)))
11 rcp-NDASM1of1 192 . 2 (((𝜑𝜓) ∨ (𝜑𝜒)) → ((𝜑𝜓) ∨ (𝜑𝜒)))
125, 10, 11rcp-NDORE2 235 1 (((𝜑𝜓) ∨ (𝜑𝜒)) → (𝜑 ∧ (𝜓𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155
This theorem is referenced by:  andoveror-P4.27a  461
  Copyright terms: Public domain W3C validator