PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  andoveror-P4.27-L1

Theorem andoveror-P4.27-L1 459
Description: Lemma for andoveror-P4.27a 461.
Assertion
Ref Expression
andoveror-P4.27-L1 ((𝜑 ∧ (𝜓𝜒)) → ((𝜑𝜓) ∨ (𝜑𝜒)))

Proof of Theorem andoveror-P4.27-L1
StepHypRef Expression
1 rcp-NDASM1of3 195 . . . 4 ((𝜑 ∧ (𝜓𝜒) ∧ 𝜓) → 𝜑)
2 rcp-NDASM3of3 197 . . . 4 ((𝜑 ∧ (𝜓𝜒) ∧ 𝜓) → 𝜓)
31, 2ndandi-P3.7 172 . . 3 ((𝜑 ∧ (𝜓𝜒) ∧ 𝜓) → (𝜑𝜓))
43ndorir-P3.11 176 . 2 ((𝜑 ∧ (𝜓𝜒) ∧ 𝜓) → ((𝜑𝜓) ∨ (𝜑𝜒)))
5 rcp-NDASM1of3 195 . . . 4 ((𝜑 ∧ (𝜓𝜒) ∧ 𝜒) → 𝜑)
6 rcp-NDASM3of3 197 . . . 4 ((𝜑 ∧ (𝜓𝜒) ∧ 𝜒) → 𝜒)
75, 6ndandi-P3.7 172 . . 3 ((𝜑 ∧ (𝜓𝜒) ∧ 𝜒) → (𝜑𝜒))
87ndoril-P3.10 175 . 2 ((𝜑 ∧ (𝜓𝜒) ∧ 𝜒) → ((𝜑𝜓) ∨ (𝜑𝜒)))
9 rcp-NDASM2of2 194 . 2 ((𝜑 ∧ (𝜓𝜒)) → (𝜓𝜒))
104, 8, 9rcp-NDORE3 236 1 ((𝜑 ∧ (𝜓𝜒)) → ((𝜑𝜓) ∨ (𝜑𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132  wff-or 144  wff-rcp-AND3 160
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by:  andoveror-P4.27a  461
  Copyright terms: Public domain W3C validator