Proof of Theorem andoveror-P4.27-L1
| Step | Hyp | Ref
| Expression |
| 1 | | rcp-NDASM1of3 195 |
. . . 4
⊢ ((𝜑 ∧ (𝜓 ∨
𝜒) ∧ 𝜓)
→ 𝜑) |
| 2 | | rcp-NDASM3of3 197 |
. . . 4
⊢ ((𝜑 ∧ (𝜓 ∨
𝜒) ∧ 𝜓)
→ 𝜓) |
| 3 | 1, 2 | ndandi-P3.7 172 |
. . 3
⊢ ((𝜑 ∧ (𝜓 ∨
𝜒) ∧ 𝜓)
→ (𝜑 ∧ 𝜓)) |
| 4 | 3 | ndorir-P3.11 176 |
. 2
⊢ ((𝜑 ∧ (𝜓 ∨
𝜒) ∧ 𝜓)
→ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧
𝜒))) |
| 5 | | rcp-NDASM1of3 195 |
. . . 4
⊢ ((𝜑 ∧ (𝜓 ∨
𝜒) ∧ 𝜒)
→ 𝜑) |
| 6 | | rcp-NDASM3of3 197 |
. . . 4
⊢ ((𝜑 ∧ (𝜓 ∨
𝜒) ∧ 𝜒)
→ 𝜒) |
| 7 | 5, 6 | ndandi-P3.7 172 |
. . 3
⊢ ((𝜑 ∧ (𝜓 ∨
𝜒) ∧ 𝜒)
→ (𝜑 ∧ 𝜒)) |
| 8 | 7 | ndoril-P3.10 175 |
. 2
⊢ ((𝜑 ∧ (𝜓 ∨
𝜒) ∧ 𝜒)
→ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧
𝜒))) |
| 9 | | rcp-NDASM2of2 194 |
. 2
⊢ ((𝜑 ∧ (𝜓 ∨
𝜒)) → (𝜓
∨ 𝜒)) |
| 10 | 4, 8, 9 | rcp-NDORE3 236 |
1
⊢ ((𝜑 ∧ (𝜓 ∨
𝜒)) → ((𝜑
∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) |