PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  oroverim-P4.28-L2

Theorem oroverim-P4.28-L2 466
Description: Lemma for oroverim-P4.28a 467.
Assertion
Ref Expression
oroverim-P4.28-L2 (((𝜑𝜓) → (𝜑𝜒)) → (𝜑 ∨ (𝜓𝜒)))

Proof of Theorem oroverim-P4.28-L2
StepHypRef Expression
1 rcp-NDASM2of2 194 . . 3 ((((𝜑𝜓) → (𝜑𝜒)) ∧ 𝜑) → 𝜑)
21ndorir-P3.11 176 . 2 ((((𝜑𝜓) → (𝜑𝜒)) ∧ 𝜑) → (𝜑 ∨ (𝜓𝜒)))
3 rcp-NDASM3of3 197 . . . . . . 7 ((((𝜑𝜓) → (𝜑𝜒)) ∧ ¬ 𝜑𝜓) → 𝜓)
43ndoril-P3.10 175 . . . . . 6 ((((𝜑𝜓) → (𝜑𝜒)) ∧ ¬ 𝜑𝜓) → (𝜑𝜓))
5 rcp-NDASM1of3 195 . . . . . 6 ((((𝜑𝜓) → (𝜑𝜒)) ∧ ¬ 𝜑𝜓) → ((𝜑𝜓) → (𝜑𝜒)))
64, 5ndime-P3.6 171 . . . . 5 ((((𝜑𝜓) → (𝜑𝜒)) ∧ ¬ 𝜑𝜓) → (𝜑𝜒))
7 rcp-NDASM2of3 196 . . . . 5 ((((𝜑𝜓) → (𝜑𝜒)) ∧ ¬ 𝜑𝜓) → ¬ 𝜑)
86, 7profeliml-P4.5a 385 . . . 4 ((((𝜑𝜓) → (𝜑𝜒)) ∧ ¬ 𝜑𝜓) → 𝜒)
98rcp-NDIMI3 225 . . 3 ((((𝜑𝜓) → (𝜑𝜒)) ∧ ¬ 𝜑) → (𝜓𝜒))
109ndoril-P3.10 175 . 2 ((((𝜑𝜓) → (𝜑𝜒)) ∧ ¬ 𝜑) → (𝜑 ∨ (𝜓𝜒)))
11 ndexclmid-P3.16.AC 251 . 2 (((𝜑𝜓) → (𝜑𝜒)) → (𝜑 ∨ ¬ 𝜑))
122, 10, 11rcp-NDORE2 235 1 (((𝜑𝜓) → (𝜑𝜒)) → (𝜑 ∨ (𝜓𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132  wff-or 144  wff-rcp-AND3 160
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by:  oroverim-P4.28a  467
  Copyright terms: Public domain W3C validator