PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-NDIMI3

Theorem rcp-NDIMI3 225
Description: Introduction Recipe.
Hypothesis
Ref Expression
rcp-NDIMI3.1 ((𝛾₁𝛾₂𝛾₃) → 𝜑)
Assertion
Ref Expression
rcp-NDIMI3 ((𝛾₁𝛾₂) → (𝛾₃𝜑))

Proof of Theorem rcp-NDIMI3
StepHypRef Expression
1 rcp-NDIMI3.1 . . 3 ((𝛾₁𝛾₂𝛾₃) → 𝜑)
21rcp-NDSEP3 186 . 2 (((𝛾₁𝛾₂) ∧ 𝛾₃) → 𝜑)
32ndimi-P3.5 170 1 ((𝛾₁𝛾₂) → (𝛾₃𝜑))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132  wff-rcp-AND3 160
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-rcp-AND3 161
This theorem is referenced by:  axL2-P3.22  254  imcomm-P3.27  265  export-P3.34b  307  example-E3.1a  309  sepimorr-P4.9c  412  sepimandl-P4.9d  415  oroverim-P4.28-L2  466  psubaddv-P6-L1  807  psubmultv-P6-L1  809  qimeqex-P7-L2  1055
  Copyright terms: Public domain W3C validator