| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > export-P3.34b | |||
| Description: '∧' Exportation Law. † |
| Ref | Expression |
|---|---|
| export-P3.34b.1 | ⊢ (𝛾 → ((𝜑 ∧ 𝜓) → 𝜒)) |
| Ref | Expression |
|---|---|
| export-P3.34b | ⊢ (𝛾 → (𝜑 → (𝜓 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-NDASM2of3 196 | . . . . 5 ⊢ ((𝛾 ∧ 𝜑 ∧ 𝜓) → 𝜑) | |
| 2 | rcp-NDASM3of3 197 | . . . . 5 ⊢ ((𝛾 ∧ 𝜑 ∧ 𝜓) → 𝜓) | |
| 3 | 1, 2 | ndandi-P3.7 172 | . . . 4 ⊢ ((𝛾 ∧ 𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) |
| 4 | export-P3.34b.1 | . . . . 5 ⊢ (𝛾 → ((𝜑 ∧ 𝜓) → 𝜒)) | |
| 5 | 4 | rcp-NDIMP1add2 212 | . . . 4 ⊢ ((𝛾 ∧ 𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓) → 𝜒)) |
| 6 | 3, 5 | ndime-P3.6 171 | . . 3 ⊢ ((𝛾 ∧ 𝜑 ∧ 𝜓) → 𝜒) |
| 7 | 6 | rcp-NDIMI3 225 | . 2 ⊢ ((𝛾 ∧ 𝜑) → (𝜓 → 𝜒)) |
| 8 | 7 | rcp-NDIMI2 224 | 1 ⊢ (𝛾 → (𝜑 → (𝜓 → 𝜒))) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ∧ wff-and 132 ∧ wff-rcp-AND3 160 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-rcp-AND3 161 |
| This theorem is referenced by: export-P3.34b.RC 308 |
| Copyright terms: Public domain | W3C validator |