PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  export-P3.34b

Theorem export-P3.34b 307
Description: '' Exportation Law.
Hypothesis
Ref Expression
export-P3.34b.1 (𝛾 → ((𝜑𝜓) → 𝜒))
Assertion
Ref Expression
export-P3.34b (𝛾 → (𝜑 → (𝜓𝜒)))

Proof of Theorem export-P3.34b
StepHypRef Expression
1 rcp-NDASM2of3 196 . . . . 5 ((𝛾𝜑𝜓) → 𝜑)
2 rcp-NDASM3of3 197 . . . . 5 ((𝛾𝜑𝜓) → 𝜓)
31, 2ndandi-P3.7 172 . . . 4 ((𝛾𝜑𝜓) → (𝜑𝜓))
4 export-P3.34b.1 . . . . 5 (𝛾 → ((𝜑𝜓) → 𝜒))
54rcp-NDIMP1add2 212 . . . 4 ((𝛾𝜑𝜓) → ((𝜑𝜓) → 𝜒))
63, 5ndime-P3.6 171 . . 3 ((𝛾𝜑𝜓) → 𝜒)
76rcp-NDIMI3 225 . 2 ((𝛾𝜑) → (𝜓𝜒))
87rcp-NDIMI2 224 1 (𝛾 → (𝜑 → (𝜓𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132  wff-rcp-AND3 160
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-rcp-AND3 161
This theorem is referenced by:  export-P3.34b.RC  308
  Copyright terms: Public domain W3C validator