PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-NDIMP1add2

Theorem rcp-NDIMP1add2 212
Description: ( 1 ) ( 1 2 3 ).
Hypothesis
Ref Expression
rcp-NDIMP1add2.1 (𝛾₁𝜑)
Assertion
Ref Expression
rcp-NDIMP1add2 ((𝛾₁𝛾₂𝛾₃) → 𝜑)

Proof of Theorem rcp-NDIMP1add2
StepHypRef Expression
1 rcp-NDIMP1add2.1 . . 3 (𝛾₁𝜑)
21rcp-NDIMP1add1 208 . 2 ((𝛾₁𝛾₂) → 𝜑)
32rcp-NDIMP2add1 209 1 ((𝛾₁𝛾₂𝛾₃) → 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-rcp-AND3 160
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-rcp-AND3 161
This theorem is referenced by:  rcp-NDIMP1add3  215  axL2-P3.22  254  imcomm-P3.27  265  trnsp-P3.31a  279  trnsp-P3.31b  282  trnsp-P3.31c  285  trnsp-P3.31d  288  export-P3.34b  307  suborl-P3.43a-L1  345  joinimandinc-P4.8a  397  sepimorr-P4.9c  412  sepimandl-P4.9d  415
  Copyright terms: Public domain W3C validator