PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-NDIMP2add2

Theorem rcp-NDIMP2add2 213
Description: ( 1 2 ) ( 1 2 3 4 ).
Hypothesis
Ref Expression
rcp-NDIMP2add2.1 ((𝛾₁𝛾₂) → 𝜑)
Assertion
Ref Expression
rcp-NDIMP2add2 ((𝛾₁𝛾₂𝛾₃𝛾₄) → 𝜑)

Proof of Theorem rcp-NDIMP2add2
StepHypRef Expression
1 rcp-NDIMP2add2.1 . . 3 ((𝛾₁𝛾₂) → 𝜑)
21rcp-NDIMP2add1 209 . 2 ((𝛾₁𝛾₂𝛾₃) → 𝜑)
32rcp-NDIMP3add1 210 1 ((𝛾₁𝛾₂𝛾₃𝛾₄) → 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132  wff-rcp-AND4 162
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-rcp-AND3 161  df-rcp-AND4 163
This theorem is referenced by:  rcp-NDIMP2add3  216
  Copyright terms: Public domain W3C validator