| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > rcp-NDIMP2add1 | |||
| Description: ( 1 ∧ 2 ) ⇒ ( 1 ∧ 2 ∧ 3 ). † |
| Ref | Expression |
|---|---|
| rcp-NDIMP2add1.1 | ⊢ ((𝛾₁ ∧ 𝛾₂) → 𝜑) |
| Ref | Expression |
|---|---|
| rcp-NDIMP2add1 | ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-NDIMP2add1.1 | . . 3 ⊢ ((𝛾₁ ∧ 𝛾₂) → 𝜑) | |
| 2 | 1 | ndimp-P3.2 167 | . 2 ⊢ (((𝛾₁ ∧ 𝛾₂) ∧ 𝛾₃) → 𝜑) |
| 3 | 2 | rcp-NDJOIN3 189 | 1 ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃) → 𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ∧ wff-and 132 ∧ wff-rcp-AND3 160 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-rcp-AND3 161 |
| This theorem is referenced by: rcp-NDIMP1add2 212 rcp-NDIMP2add2 213 example-E3.2b 312 |
| Copyright terms: Public domain | W3C validator |