PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-NDIMP2add1

Theorem rcp-NDIMP2add1 209
Description: ( 1 2 ) ( 1 2 3 ).
Hypothesis
Ref Expression
rcp-NDIMP2add1.1 ((𝛾₁𝛾₂) → 𝜑)
Assertion
Ref Expression
rcp-NDIMP2add1 ((𝛾₁𝛾₂𝛾₃) → 𝜑)

Proof of Theorem rcp-NDIMP2add1
StepHypRef Expression
1 rcp-NDIMP2add1.1 . . 3 ((𝛾₁𝛾₂) → 𝜑)
21ndimp-P3.2 167 . 2 (((𝛾₁𝛾₂) ∧ 𝛾₃) → 𝜑)
32rcp-NDJOIN3 189 1 ((𝛾₁𝛾₂𝛾₃) → 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132  wff-rcp-AND3 160
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-rcp-AND3 161
This theorem is referenced by:  rcp-NDIMP1add2  212  rcp-NDIMP2add2  213  example-E3.2b  312
  Copyright terms: Public domain W3C validator