PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-NDIMP3add1

Theorem rcp-NDIMP3add1 210
Description: ( 1 2 3 ) ( 1 2 3 4 ).
Hypothesis
Ref Expression
rcp-NDIMP3add1.1 ((𝛾₁𝛾₂𝛾₃) → 𝜑)
Assertion
Ref Expression
rcp-NDIMP3add1 ((𝛾₁𝛾₂𝛾₃𝛾₄) → 𝜑)

Proof of Theorem rcp-NDIMP3add1
StepHypRef Expression
1 rcp-NDIMP3add1.1 . . 3 ((𝛾₁𝛾₂𝛾₃) → 𝜑)
21ndimp-P3.2 167 . 2 (((𝛾₁𝛾₂𝛾₃) ∧ 𝛾₄) → 𝜑)
32rcp-NDJOIN4 190 1 ((𝛾₁𝛾₂𝛾₃𝛾₄) → 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-rcp-AND3 160  wff-rcp-AND4 162
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-rcp-AND4 163
This theorem is referenced by:  rcp-NDIMP2add2  213  rcp-NDIMP3add2  214  rcp-NDIMP1add3  215  example-E3.2b  312
  Copyright terms: Public domain W3C validator