PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-NDJOIN4

Theorem rcp-NDJOIN4 190
Description: ( ( 1 2 3 ) 4 ) ( 1 2 3 4 ).
Hypothesis
Ref Expression
rcp-NDJOIN4.1 (((𝛾₁𝛾₂𝛾₃) ∧ 𝛾₄) → 𝜑)
Assertion
Ref Expression
rcp-NDJOIN4 ((𝛾₁𝛾₂𝛾₃𝛾₄) → 𝜑)

Proof of Theorem rcp-NDJOIN4
StepHypRef Expression
1 rcp-NDJOIN4.1 . 2 (((𝛾₁𝛾₂𝛾₃) ∧ 𝛾₄) → 𝜑)
2 df-rcp-AND4 163 . . . . 5 ((𝛾₁𝛾₂𝛾₃𝛾₄) ↔ ((𝛾₁𝛾₂𝛾₃) ∧ 𝛾₄))
32bisym-P2.6b.SH 125 . . . 4 (((𝛾₁𝛾₂𝛾₃) ∧ 𝛾₄) ↔ (𝛾₁𝛾₂𝛾₃𝛾₄))
43subiml-P2.8a.SH 129 . . 3 ((((𝛾₁𝛾₂𝛾₃) ∧ 𝛾₄) → 𝜑) ↔ ((𝛾₁𝛾₂𝛾₃𝛾₄) → 𝜑))
54bifwd-P2.5a.SH 112 . 2 ((((𝛾₁𝛾₂𝛾₃) ∧ 𝛾₄) → 𝜑) → ((𝛾₁𝛾₂𝛾₃𝛾₄) → 𝜑))
61, 5ax-MP 14 1 ((𝛾₁𝛾₂𝛾₃𝛾₄) → 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132  wff-rcp-AND3 160  wff-rcp-AND4 162
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-rcp-AND4 163
This theorem is referenced by:  rcp-NDASM1of4  198  rcp-NDASM2of4  199  rcp-NDASM3of4  200  rcp-NDASM4of4  201  rcp-NDIMP3add1  210  rcp-IMPIME3  529
  Copyright terms: Public domain W3C validator