PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  bisym-P2.6b.SH

Theorem bisym-P2.6b.SH 125
Description: Inference from bisym-P2.6b 124.
Hypothesis
Ref Expression
bisym-P2.6b.SH.1 (𝜑𝜓)
Assertion
Ref Expression
bisym-P2.6b.SH (𝜓𝜑)

Proof of Theorem bisym-P2.6b.SH
StepHypRef Expression
1 bisym-P2.6b.SH.1 . 2 (𝜑𝜓)
2 bisym-P2.6b 124 . 2 ((𝜑𝜓) → (𝜓𝜑))
31, 2ax-MP 14 1 (𝜓𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107
This theorem is referenced by:  rcp-NDJOIN3  189  rcp-NDJOIN4  190  rcp-NDJOIN5  191
  Copyright terms: Public domain W3C validator