| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > bisym-P2.6b.SH | |||
| Description: Inference from bisym-P2.6b 124. |
| Ref | Expression |
|---|---|
| bisym-P2.6b.SH.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| bisym-P2.6b.SH | ⊢ (𝜓 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bisym-P2.6b.SH.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | bisym-P2.6b 124 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) | |
| 3 | 1, 2 | ax-MP 14 | 1 ⊢ (𝜓 ↔ 𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: ↔ wff-bi 104 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 |
| This theorem is referenced by: rcp-NDJOIN3 189 rcp-NDJOIN4 190 rcp-NDJOIN5 191 |
| Copyright terms: Public domain | W3C validator |